Home | Species List | Bibliography


Trichoptera: Limnephilidae of Gunnison County, Colorado

Limnephilus picturatus

McLachlan, 1875
Updated 7 Nov 2016
TSN 116098

Good Links

On this website:
Introduction to Limnephilidae
Introduction to Limnephilus

Other Websites:
Photos, Map, Museum specimens, DNA - Barcodinglife.org

Illustration - University of Alberta Entomology Collection Species page
     Has illustration of male genitalia, description, habitat information, range and more.

References

Finn,DS and Poff,NL 2008 Emergence and flight activity of alpine stream insects in two years with contrasting winter snowpack. Artic, Antarctic, and Alpine Research 40(4)638-646. PDF

Gislason,GM 1979. Identification of Icelandic caddis larvae, with descriptions of Limnephilus fenestratus (Zett.) and L. picturatus McL. (Trichoptera: Limnephilidae, Phryganeidae). Entomologica Scandinavica 10:161-176.

Herrmann,SJ; Ruiter,DE and Unzicker,JD 1986 Distribution and records of Colorado Trichoptera. Southwestern Naturalist 31 4, 421-457.
     The authors show this species present in Gunnison County.

McLachlan, R 1875. Descriptions de plusieurs nevropteres-planipennes et trichopteres nouveaus de l'ile de Celebes et de quelques especis nouvelles de Dipseudopsis avec considerations sur ce genre. Tijdschrift voor Entomologie 18:1-32, plates 1-2.

Nimmo, A 1971 The adult Rhyacophilidae and Limnephilidae (Trichoptera) of Alberta and eastern British Columbia and their post glacial origin. Quaestiones Entomologicae 73: 3-234.

Ruiter,DE 1995 The adult Limnephilus Leach (Trichoptera:Limnephilidae) of the new world. Vol. XI Ohio Biological Survey, College of Biological Sciences, Ohio State University, Columbus, Ohio. 200 pages.

Wissinger, SA 2004 Population fluctuations in caddisflies inhabiting high-elevation wetlands in central Colorado . Presented at the NABS Annual meeting, Vancouver, British Columbia, in Population Ecology 2 Abstract

Wissinger,SA; Brown,WS and Jannot,JE 2003 Caddisfly life histories along permanence gradients in high altitude wetlands in Colorado (U.S.A.). Freshwater Biology 48(2). Abstract Pdf Icon (427 KB)
     " SUMMARY 1. Larvae of cased caddisflies (Limnephilidae and Phryganeidae) are among the most abundant and conspicuous invertebrates in northern wetlands. Although species replacements are often observed along permanence gradients, the underlying causal mechanisms are poorly understood. In this paper, we report on the distributional patterns of caddisflies in permanent and temporary high-altitude ponds, and how those patterns reflect differences in life history characteristics that affect desiccation tolerance (fundamental niches) versus constraints related to biotic interactions (realised niches).
2. Species (Hesperophylax occidentalis and Agrypnia deflata) that were encountered only in permanent ponds are restricted in distribution by life history (no ovarian diapause, aquatic oviposition, and/or inability to tolerate desiccation). Although the egg masses of H. occidentalis tolerate desiccation, the larvae leave the protective gelatinous matrix of the egg mass because adults oviposit in water.
3. Three species (Asynarchus nigriculus, Limnephilus externus and L. picturatus) have life history characteristics (rapid larval growth, ovarian diapause and terrestrial oviposition of desiccation-tolerant eggs) that should facilitate the use of both permanent and temporary habitats. However, A. nigriculus is rare or absent in most permanent ponds, and L. externus and L. picturatus are rare or absent in most temporary ponds. Experimental data from a previous study on the combined effects of salamander predation and interspecific interactions among caddisflies (e.g. intraguild predation) suggest that biotic interactions limit each species to a subset of potentially exploitable habitats.
4. Many wetland invertebrates exhibit species replacements along permanence gradients, but few studies have separated the relative importance of the effects of drying per se from the effects of biotic interactions. Our results emphasise the complementary roles of comparative data on life histories and experimental data on competition and predation for understanding invertebrate distributions along permanence gradients."


Wissinger,SA; Eldermire,C and Whissel,JC 2005 The role of larval cases in reducing aggression and cannibalism among caddisflies in temporary wetlands. Wetlands 24(4) 777-783. PDF
     Abstract: " Larvae of wetland caddisflies supplement their detrital diets with animal material. In some species this supplement is obtained by preying on other caddisflies. In this study, we conducted a series of laboratory experiments to a) compare intraspecific aggression and the propensity for cannibalism among six caddisfly species that occur along a gradient from vernal to autumnal to permanent high-elevation wetlands, and b) determine the importance of cases in preventing or reducing cannibalism and intraguild predation. We predicted that cannibalism and overall levels of aggression should be highest in species that occur in temporary habitats. We found that all of the species that use temporary habitats (Asynarchus nigriculus ,Hesperophylax occidentalis, Limnephilus externus, Limnephilus picturatus, Limnephilus secludens) were extremely aggressive towards and cannibalized conspecifics without cases. Species that typically occur in short-duration temporary wetlands were more aggressive than those in long-duration temporary wetlands. Cases prevented cannibalism in four of these temporary-habitat species, and reduced cannibalism among Asynarchus larvae. The latter species occurs in extremely ephemeral habitats where cannibalism provides a dietary supplement that probably facilitates emergence before drying. Asynarchus also preys on Limnephilus spp., and we found that cases dramatically reduced vulnerability to intraguild predation. Larvae of Agrypnia deflata, a species that occurs only in permanent wetlands, were least aggressive and rarely cannibalized conspecifics. Our results are consistent with the hypothesis that intraspecific aggression and the potential for cannibalism are highest in species that live in habitats with developmental time constraints. Many wetland invertebrates face developmental time constraints and selection for aggression in temporary habitats should be especially strong for taxa that rely on animal material to supplement a mainly detrital diet."

Wissinger,SA; Whissel,J; Eldermire,C and Brown,W 2006 Predator defense along a permanence gradient: roles of case structure, behavior, and developmental phenology in caddisflies, Oecologia, Pages 1 - 12. Abstract (311 KB)


Brown,WS 2005 Trichoptera (Caddisflies) of Gunnison County, Colorado, USA
www.gunnisoninsects.org