Trichoptera: Limnephilidae of Gunnison County, ColoradoLimnephilus externus(Hagen 1861)Updated 25 June 2024
TSN 116146 HabitatPonds and lakes in the Northern East River ValleyDescriptionDistinctive case of transversely crossing Carex or other aquatic plants. Case structure varies from big fluffy cases with distinctly green leaf stems at the higher elevations of Gunnison County to more tightly wound cases at the Kettle ponds south of Gothic. Case structure varies by available plants, presence/absence of predators and the density of other L. externus. When food supplies are low, they chew each others cases down.Locations CollectedKettle Ponds, Mexican Cut Nature Preserve, Meridian or Long Lake, Snodgrass Ponds Stampede, Horse and Foal, 401 Beaver Ponds, South of Gunnison?Good LinksOn this website:Limnephilidae Introduction Other Websites: Photos, Map, Museum specimens, DNA - Barcodinglife.org Illustration - University of Alberta Entomology Collection Species page Has description, habitat information, range and more. ReferencesBalik,JA; Greig,HS; Taylor,BW and Wissinger,SA 2023 Consequences of climate-induced range expansions on multiple ecosystem functions. Communications Biology, 6(1), p.390. PDFAbstract: "Climate-driven species range shifts and expansions are changing community composition, yet the functional consequences in natural systems are mostly unknown. By combining a 30-year survey of subalpine pond larval caddisfly assemblages with species-specific functional traits (nitrogen and phosphorus excretion, and detritus processing rates), we tested how three upslope range expansions affected species' relative contributions to caddisfly-driven nutrient supply and detritus processing. A subdominant resident species (Ag. deflata) consistently made large relative contributions to caddisfly-driven nitrogen supply throughout all range expansions, thus "regulating" the caddisfly-driven nitrogen supply. Whereas, phosphorus supply and detritus processing were regulated by the dominant resident species (L. externus) until the third range expansion (by N. hostilis). Since the third range expansion, N. hostilis's relative contribution to caddisfly-driven phosphorus supply increased, displacing L. externus's role in regulating caddisfly-driven phosphorus supply. Meanwhile, detritus processing contributions became similar among the dominant resident, subdominant residents, and range expanding species. Total ecosystem process rates did not change throughout any of the range expansions. Thus, shifts in species' relative functional roles may occur before shifts in total ecosystem process rates, and changes in species' functional roles may stabilize processes in ecosystems undergoing change." Balik,JA; Leitz,C; Washko,SE; Cleveland,B; Krejsa,DM; Perchik,ME; Stogsdill,A; Vlah,M; Demi,LM; Greig,HS and Shepard,ID 2022 Species-specific traits predict whole-assemblage detritus processing by pond invertebrates. Oecologia, 199(4), pp.951-963. PDF Balik,JA; Taylor,BW; Washko,SE and Wissinger,SA 2018 High interspecific variation in nutrient excretion within a guild of closely related caddisfly species. Ecosphere, 9(5) p.e02205. PDF Berte,SB and Pritchard,G 1983 The structure and hydration dynamics of Trichopteran (Insecta) egg masses. Canadian Journal of Zoology 61, 378-384. Berte,SB and Pritchard,G 1986 The life histories of Limnephilus externus (Hagen), Anabolia bimaculata (walker), and Nemotaulius hostilis (Hagen) (Trichoptera:Limnephilidae) in a pond in southern Alberta, Canada. Canadian Journal of Zoology 64, 2348-2356. Czachorowski,S 1997 Limnephilus externus Hagen (Trichoptera: Limnephilidae) in Poland. Polskie Pismo Entomologiczne 66: 117-119. Demi,LM; Hughes,D and Taylor,BW 2022 Characterizing the role of phosphorus availability and periphytic algae in the food choice and performance of detritivorous caddisflies (Trichoptera: Limnephilidae). Freshwater Science, 41(1) 18-32. PDF Abstract: "Organisms that rely on detritus as their primary food source may face particularly strong nutritional constraints on growth and development, given the characteristically poor quality of detrital resources. In freshwater ecosystems, the low content of P in detritus often limits detritivore growth. Additionally, a growing body of evidence suggests the biochemical composition of algae, such as essential fatty acids, can limit aquatic detritivore growth. We investigated feeding preference and growth responses of common aquatic detritivores by performing paired feeding-preference and growth experiments on 4 species of larval caddisflies (Trichoptera) from the family Limnephilidae: Asynarchus nigriculus, Anabolia bimaculata, Limnephilus externus, and Ecclisomyia sp. We manipulated both the P content and epiphytic algal biomass of a common detrital food resource (decomposing sedge [Carex sp.]) by conditioning the detritus under 2 different light (ambient, shaded) and P (ambient [low], +P) regimes. We tested 3 hypotheses that describe feeding preferences and performance under different scenarios of P limitation, algal limitation, and co-limitation by P and algae. We observed evidence of preferential feeding behavior for each of the 4 taxa, with 2 species exhibiting preferences for conditioned detritus with high algal biomass and 2 for detritus from the +P treatments. We observed agreement between feeding preferences and performance (growth, growth efficiency, mortality) for only 2 taxa, with A. nigriculus exhibiting higher growth rates and growth efficiency on their preferred high- P detritus, and L. externus experiencing lower mortality when reared on their preferred high algal biomass detritus. These findings provide an initial step toward characterizing the feeding preferences and performance responses of aquatic detritivores to 2 potentially common nutritional constraints: detrital P and algal supply." Djernæs,M and Sperling,FAH 2012 Exploring a key synapomorphy: correlations between structure and function in the sternum V glands of Trichoptera and Lepidoptera (Insecta). Biological Journal of the Linnean Society, 106: 561-579. Hagen,HA 1861 Synopsis of the Neuroptera of North America with a list of South American species. Smithsonian Miscellaneous Collections 4, 1-344. Described as Limnophilus externus. Hagen's Glossary (pdf) Herrmann,SJ; Ruiter,DE and Unzicker,JD 1986 Distribution and records of Colorado Trichoptera. Southwestern Naturalist 31 4, 421-457. The authors show this species present in Gunnison County. Jannot,JE; Wissinger,SA and Lucas,JR 2008 Diet and a developmental time constraint alter life-history trade-offs in a caddis fly (Trichoptera: Limnephilidae). Biological Journal of the Linnean Society, 95(3), 495-504. Abstract PDF Abstract: "Environmental factors influence variation in life histories by affecting growth, development, and reproduction. We conducted an experiment in outdoor mesocosms to examine how diet and a time constraint on juvenile development (pond-drying) influence life-history trade-offs (growth, development, adult body mass) in the caddis fly Limnephilus externus (Trichoptera: Limnephilidae). We predicted that: (1) diet supplementation would accelerate larval growth and development, and enhance survival to adulthood; (2) pond-drying would accelerate development and increase larval mortality; and (3) the relationship between adult mass and age at maturity would be negative. Diet supplementation did lead to larger adult mass under nondrying conditions, but did not significantly alter growth or development rates. Contrary to predictions, pond-drying reduced growth rates and delayed development. The slope (positive or negative) of the female mass-age at maturity relationship depended on interactions with diet or pond-drying, but the male mass-age relationship was negative and independent of treatment. Our results suggest that pond-drying can have negative effects on the future fitness of individuals by increasing the risk of desiccation-induced, pre-reproductive mortality and decreasing adult body size at maturity. These negative effects on life history cannot be overcome with additional nutritional resources in this species. " Klemmer,AJ; Wissinger,SA; Greig,HS and Ostrofsky,ML 2012 Nonlinear effects of consumer density on multiple ecosystem processes. Journal of Animal Ecology, 81(4),770-780. PDF Abstract: "1. In the face of human-induced declines in the abundance of common species, ecologists have become interested in quantifying how changes in density affect rates of biophysical processes, hence ecosystem function. We manipulated the density of a dominant detritivore (the cased caddisfly, Limnephilus externus) in subalpine ponds to measure effects on the release of detritus-bound nutrients and energy. 2. Detritus decay rates (k, mass loss) increased threefold, and the loss of nitrogen (N) and phosphorus (P) from detrital substrates doubled across a range of historically observed caddisfly densities. Ammonium and total soluble phosphorus concentrations in the water column also increased with caddisfly density on some dates. Decay rates, nutrient release and the change in total detritivore biomass all exhibited threshold or declining responses at the highest densities. 3. We attributed these threshold responses in biophysical processes to intraspecific competition for limiting resources manifested at the population level, as density-dependent per-capita consumption, growth, development and case : body size in caddisflies was observed. Moreover, caddisflies increasingly grazed on algae at high densities, presumably in response to limiting detrital resources. 4. These results provide evidence that changes in population size of a common species will have nonlinear, threshold effects on the rates of biophysical processes at the ecosystem level. Given the ubiquity of negative density dependence in nature, nonlinear consumer density-ecosystem function relationships should be common across species and ecosystems. " McCullagh,BS; Wissinger,SA and Marcus,JM 2015 Identifying PCR primers to facilitate molecular phylogenetics in Caddisflies (Trichoptera). Zoological Systematics, 40(4) 459 PDF Nimmo,A 1971 The adult Rhyacophilidae and Limnephilidae (Trichoptera) of Alberta and eastern British Columbia and their post glacial origin. Quaestiones Entomologicae 73: 3-234. Parisek,CA; Marchetti,MP and Cover,MR 2023 Morphological plasticity in a caddisfly that co-occurs in lakes and streams. Freshwater Science, 42(2), pp.161-175. PDF Abstract: "Lake and stream fauna are frequently studied, yet surprisingly little is known about ecological and evolutionary dynamics of species that inhabit both lentic and lotic habitats. There are few examples of species co-occurring in different flow types, which raises questions about how co-occurrence may influence ability to adapt to changing climatic conditions. One such co-occurring species is the aquatic insect Limnephilus externus Hagen, 1861 (Trichoptera: Limnephilidae), a species known to be widely distributed in lakes of the Nearctic and Palearctic regions. Here, we test whether lake-stream populations of the caddisfly L. externus are evolutionarily or ecologically distinct. We examined larval body and case morphology, interspecies phoretic associations, and the mitochondrial DNA cytochrome c oxidase I gene among lake and stream populations of L. externus. We also explored potential morphological differences among distinct haplotypes. We observed differences between lake and stream populations in abundance, phenology, some aspects of body and case morphology, and abdominal mite presence, indicating that lakes and streams may yield distinct ecological phenotypes for this species. We also observed distinct regional differences in caddisfly body condition and case construction sturdiness and found distinct assemblages of microinvertebrates associated with the caddisfly's body and cases. Lake-stream L. externus did not show genetic divergence; however, 3 potentially distinct haplotypes were present across the research sites as well as in sequences from North America and Canada. Limnephilus externus appears to exhibit wide geographic range and low geographic sequence structure, which could account for the species' large variation in phenology and morphology at the lake-stream level. Combined life history and phylogenetic studies provide valuable insight into the ecological and evolutionary dynamics that influence the adaptability of aquatic fauna to climatic change." Pritchard,G and Berté,SB.1987 Growth and food choice by two species of limnephilid caddis larvae given natural and artiflcial foods. Freshwater Biology, 18(3), pp.529-535. Summary: " 1. Larvae of the caddisfly Limnephilus externus grew faster than those of Nemotaulius hostilis in a permanent pond in southern Alberta. 2. We investigated whether this was due to more efficient food processing by L. externus, whether their growth coincided with high environmental temperatures, or whether they had the ability to choose and exploit higher quality food. 3. Of five foods used, protein content was highest in wheat flakes, similar in alder, bur-reed and willow leaves, and lowest in the moss Leptodictyum. 4. Both species grew faster and survived better on the wheat flakes, but there was no statistically significant difference between species on the same food when reared at 4 or 8°C in the laboratory. 5. At 16°C L. externus grew better than N. hostilis when fed wheat, but N. hostilis survived better on alder. Both species had higher survival and growth rates per day-degree at 8 and 4 than at 16°C. 6. Thus, faster growth rates of L. externus in the field appear to be due simply to higher temperatures during the larval growth period. Indeed, N. hostilis had a significantly higher growth rate per day-degree in a field experiment. 7. In food preference experiments, L. externus chose wheat first, moss second, alder third, and willow last; N. hostilis chose alder first, bur-reed second, moss third, and wheat last. 8. Protein content, leaf texture, microbial conditioning, and an interaction between larval behaviours selecting for food quality and case materials, are potential factors that influence 'food preference' results." Ruiter,DE 1995 The adult Limnephilus Leach (Trichoptera:Limnephilidae) of the new world. Vol. 11. Ohio Biological Survey, College of Biological Sciences, Ohio State University, Columbus, Ohio. 200 pages. Keys and illustrates the adults of this entire genus and particular species. Also shows it is present in Gunnison County COlorado. Shepard,ID; Wissinger,SA and Greig,HS 2021 Elevation alters outcome of competition between resident and range-shifting species. Global Change Biology, 27(2) 270-281. Abstract: "Species' geographic range shifts toward higher latitudes and elevations are among the most frequently reported consequences of climate change. However, the role of species interactions in setting range margins remains poorly understood. We used cage experiments in ponds to test competing hypotheses about the role of abiotic and biotic mechanisms for structuring range boundaries of an upslope range-shifting caddisfly Limnephilus picturatus. We found that competition with a ubiquitous species Limnephilus externus significantly decreased L. picturatus survival and emergence at subalpine elevations supporting the notion that species interactions play a critical role in determining upslope range limits. However, without competitors, L. picturatus survival was greater at highelevation than lowelevation sites. This was contrary to decreases in body mass (a proxy for fecundity) with elevation regardless of the presence of competitors. We ultimately show that species interactions can be important for setting upslope range margins. Yet, our results also highlight the complications in defining what may be abiotically stressful for this species and the importance of considering multiple demographic variables. Understanding how species ranges will respond in a changing climate will require quantifying species interactions and how they are influenced by the abiotic context in which they play out." Shepard,ID; Wissinger,SA; Wood,ZT and Greig,HS 2022 Predators balance consequences of climate-change-induced habitat shifts for range-shifting and resident species. Journal of Animal Ecology, 91(2), pp.334-344. PDF Abstract: " 1. While many species distributions are shifting poleward or up in elevation in response to a changing climate, others are shifting their habitats along localized gradients in environmental conditions as abiotic conditions become more stressful. Whether species are moving across regional or local environmental gradients in response to climate change, range-shifting species become embedded in established communities of competitors and predators. The consequences of these shifts for both resident and shifting species are often unknown, as it can be difficult to isolate the effects of multiple species interactions. 2. Using a model system of insects in high-elevation ponds in the Rocky Mountains of Colorado, we sought to disentangle the effects of predation and intraguild interactions on the survival and development of a semi-permanent pond resident caddisfly Limnephilus externus and the habitat-shifting caddis Asynarchus nigriculus that is being forced into semi-permanent ponds as temporary ponds dry too quickly to complete development. 3. We conducted a manipulative in-situ pond cage experiment in which L. externus and A. nigriculus caddisfly larvae in single-species treatments and together were exposed to the presence/absence of predatory Dytiscus diving beetle larvae. This approach allowed us to isolate the effects of intraguild interactions and predation on the survival and development of both the resident and habitat-shifting species. 4. We found that intraguild interactions had strong negative effects on the resident and habitat-shifting species. Intraguild interactions reduced the survival of the resident L. externus and increased the variation in survival of the shifting A. nigriculus. However, Dytiscus predators reduced these negative effects, stabilizing the community by increasing L. externus survival and reducing variation in A. nigriculus survival. We also found that intraguild interactions reduced L. externus biomass but resulted in increased A. nigriculus development. A. nigriculus development was also increased by predation. 5. Our results show that strong intraguild interactions between resident and shifting species are likely to have negative consequences for both species. However, the presence of predators reduces these negative consequences of the habitat shift on both the resident and the shifting species." Wissinger,SA; Brown,WS and Jannot,JE 2003 Caddisfly life histories along permanence gradients in high altitude wetlands in Colorado (U.S.A.). Freshwater Biology 48(2). (427 KB) "SUMMARY 1. Larvae of cased caddisflies (Limnephilidae and Phryganeidae) are among the most abundant and conspicuous invertebrates in northern wetlands. Although species replacements are often observed along permanence gradients, the underlying causal mechanisms are poorly understood. In this paper, we report on the distributional patterns of caddisflies in permanent and temporary high-altitude ponds, and how those patterns reflect differences in life history characteristics that affect desiccation tolerance (fundamental niches) versus constraints related to biotic interactions (realised niches). 2. Species (Hesperophylax occidentalis and Agrypnia deflata) that were encountered only in permanent ponds are restricted in distribution by life history (no ovarian diapause, aquatic oviposition, and/or inability to tolerate desiccation). Although the egg masses of H. occidentalis tolerate desiccation, the larvae leave the protective gelatinous matrix of the egg mass because adults oviposit in water. 3. Three species (Asynarchus nigriculus, Limnephilus externus and L. picturatus) have life history characteristics (rapid larval growth, ovarian diapause and terrestrial oviposition of desiccation-tolerant eggs) that should facilitate the use of both permanent and temporary habitats. However, A. nigriculus is rare or absent in most permanent ponds, and L. externus and L. picturatus are rare or absent in most temporary ponds. Experimental data from a previous study on the combined effects of salamander predation and interspecific interactions among caddisflies (e.g. intraguild predation) suggest that biotic interactions limit each species to a subset of potentially exploitable habitats. 4. Many wetland invertebrates exhibit species replacements along permanence gradients, but few studies have separated the relative importance of the effects of drying per se from the effects of biotic interactions. Our results emphasise the complementary roles of comparative data on life histories and experimental data on competition and predation for understanding invertebrate distributions along permanence gradients." Wissinger,SA and Eldermire,C and Whissel,JC 2005 The role of larval cases in reducing aggression and cannibalism among caddisflies in temporary wetlands. Wetlands 24(4) 777-783. PDF Abstract: " Larvae of wetland caddisflies supplement their detrital diets with animal material. In some species this supplement is obtained by preying on other caddisflies. In this study, we conducted a series of laboratory experiments to a) compare intraspecific aggression and the propensity for cannibalism among six caddisfly species that occur along a gradient from vernal to autumnal to permanent high-elevation wetlands, and b) determine the importance of cases in preventing or reducing cannibalism and intraguild predation. We predicted that cannibalism and overall levels of aggression should be highest in species that occur in temporary habitats. We found that all of the species that use temporary habitats (Asynarchus nigriculus ,Hesperophylax occidentalis, Limnephilus externus, Limnephilus picturatus, Limnephilus secludens) were extremely aggressive towards and cannibalized conspecifics without cases. Species that typically occur in short-duration temporary wetlands were more aggressive than those in long-duration temporary wetlands. Cases prevented cannibalism in four of these temporary-habitat species, and reduced cannibalism among Asynarchus larvae. The latter species occurs in extremely ephemeral habitats where cannibalism provides a dietary supplement that probably facilitates emergence before drying. Asynarchus also preys on Limnephilus spp., and we found that cases dramatically reduced vulnerability to intraguild predation. Larvae of Agrypnia deflata, a species that occurs only in permanent wetlands, were least aggressive and rarely cannibalized conspecifics. Our results are consistent with the hypothesis that intraspecific aggression and the potential for cannibalism are highest in species that live in habitats with developmental time constraints. Many wetland invertebrates face developmental time constraints and selection for aggression in temporary habitats should be especially strong for taxa that rely on animal material to supplement a mainly detrital diet." Wissinger,SA; Sparks,GB; Rouse,GL; Brown,WS; Steltzer,HM 1996 Intraguild predation and cannibalism among larvae of detritivorus caddisflies in subalpine wetlands. Ecology 77 8, 2421-2430. PDF Abstract: "Comparative data from subalpine wetlands in Colorado indicate that larvae of the limnephilid caddisflies, Asynarchus nigriculus and Limnephilus externus, are reciprocally abundant among habitats-Limnephilus larvae dominate in permanent waters, whereas Asynarchus larvae dominate in temporary basins. The purpose of this paper is to report on field and laboratory experiments that link this pattern of abundance to biotic interactions among larvae. In the first field experiment, growth and survival were compared in single and mixed species treatments in littoral enclosures. Larvae, which eat mainly vascular plant detritus, grew at similar rates among treatments in both temporary and permanent habitats suggesting that exploitative competition is not important under natural food levels and caddisfly densities. However, the survival of Limnephilus larvae was reduced in the presence of Asynarchus larvae. Subsequent behavioral studies in laboratory arenas revealed that Asynarchus larvae are extremely aggressive predators on Limnephilus larvae. In a second field experiment we manipulated the relative sizes of larvae and found that Limnephilus larvae were preyed on only when Asynarchus larvae had the same size advantage observed in natural populations. Our data suggest that the dominance of Asynarchus larvae in temporary habitats is due to asymmetric intraguild predation (IGP) facilitated by a phenological head start in development. These data do not explain the dominance of Limnephilus larvae in permanent basins, which we show elsewhere to be an indirect effect of salamander predation. Behavioral observations also revealed that Asynarchus larvae are cannibalistic. In contrast to the IGP on Limnephilus larvae, Asynarchus cannibalism occurs among same-sized larvae and often involves the mobbing of one victim by several conspecifics. In a third field experiment, we found that Asynarchus cannibalism was not density-dependent and occurred even at low larval densities. We hypothesize that Asynarchus IGP and cannibalism provide a dietary supplement to detritus that may be necessary for the timely completion of development in these nutrient-poor, high-elevation wetlands." Wissinger,SA; Whissel,J; Eldermire,C and Brown,W 2006 Predator defense along a permanence gradient: roles of case structure, behavior, and developmental phenology in caddisflies, Oecologia, Pages 1 - 12. Abstract (311 KB) Abstract: "Species replacements along freshwater permanence gradients are well documented, but underlying mechanisms are poorly understood for most taxa. In subalpine wetlands in Colorado, the relative abundance of caddisfly larvae shifts from temporary to permanent basins. Predators on caddisflies also shift along this gradient; salamanders (Ambystoma tigrinum nebulosum) in permanent ponds are replaced by predaceous diving beetles (Dytiscus dauricus) in temporary habitats. We conducted laboratory and field experiments to determine the effectiveness of caddisfly cases in reducing vulnerability to these predators. We found that larvae of a temporary-habitat caddisfly (Asynarchus nigriculus) were the most vulnerable to salamanders. Two relatively invulnerable species (Limnephilus externus, L. picturatus) exhibited behaviors that reduced the likelihood of detection and attack, whereas the least vulnerable species (Agrypnia deflata) was frequently detected and attacked, but rarely captured because cases provided an effective refuge. Vulnerability to beetle predation was also affected by cases. The stout cases of L. externus larvae frequently deterred beetle larvae, whereas the tubular cases of the other species were relatively ineffective. Two of these vulnerable species (A. nigriculus and L. picturatus) often co-occur with beetles; thus, case construction alone is insufficient to explain patterns of caddisfly coexistence along the permanence gradient. One explanation for the coexistence of these two species with beetles is that they develop rapidly during early summer and pupate before beetle larvae become abundant. One species (L. picturatus) pupates by burying into soft substrates that serve as a refuge. The other (A. nigriculus) builds stone pupal cases, which in field experiments, more than doubles survival compared to organic pupal cases. The combined results of these experiments suggest that caddisfly distributions along permanence gradients depend on a suite of primary and secondary predator defenses that include larval and pupal case structure, predator-specific escape behaviors, and the phenology of larval development." Wissinger,SA; Whiteman,HH; Sparks,GB; Rouse,GL and Brown,WS 1999 Foraging trade-offs along a predator-permanence gradient in subalpine wetlands. Ecology 80, 2102-2116. PDF Abstract: "We conducted a series of field and laboratory experiments to determine the direct and indirect effects of a top predator, the tiger salamander (Ambystoma tigrinum nebulosum), on larvae of two species of limnephilid caddisflies (Limnephilus externus and Asynarchus nigriculus) in subalpine wetlands in central Colorado. Asynarchus larvae predominate in temporary wetlands and are aggressive intraguild predators on Limnephilus larvae, which only predominate in permanent basins with salamanders. We first conducted a field experiment in mesocosms (cattle tanks) to quantify the predatory effects of different life stages of salamanders on the two caddisfly species. Two life stages of the salamanders (larvae and paedomorphs) preferentially preyed on Asynarchus relative to Limnephilus. Subsequent laboratory experiments revealed that high Asynarchus activity rates and relatively ineffective antipredatory behaviors led to higher salamander detection and attack rates compared to Limnephilus. In a second field experiment (full factorial for presence and absence of each of the three species), we found that salamander predation on Asynarchus had an indirect positive effect on Limnephilus: survival was higher in the presence of salamanders + Asynarchus than with just Asynarchus. In the laboratory we compared the predatory effects of salamanders with and without their mouths sewn shut and found the observed indirect positive effect on Limnephilus survival to be mainly the result of reduced numbers of Asynarchus rather than salamander-induced changes in Asynarchus behavior. We argue that indirect effects of predator-predator interactions on shared prey will be mainly density-mediated and not trait-mediated when one of the predators (in this case, Asynarchus) is under strong selection for rapid growth and therefore does not modify foraging behaviors in response to the other predator. The reciprocal dominance of Limnephilus and Asynarchus in habitats with and without salamanders probably reflects a trade-off between competitive superiority and vulnerability to predation. The high activity levels and aggressiveness that enable Asynarchus to complete development in temporary habitats result in strong asymmetric competition (via intraguild predation) with Limnephilus. In permanent habitats these same behaviors increase Asynarchus vulnerability to salamander predation, which indirectly benefits Limnephilus. This and previous work implicate salamanders as keystone predators that exert a major influence on the composition of benthic and planktonic assemblages in subalpine wetlands." Notice the head and legs sticking out of the case to the left. There is a second caddis to the right who appears to be climbing into or chewing inside the back end of the first animal's case. |